90 research outputs found

    A Study of the Conformers of the (Nonafluorobutanesulfonyl)imide Ion by Means of Infrared Spectroscopy and Density Functional Theory (DFT) Calculations

    Get PDF
    Pyrrolidinium-based ionic liquids with anions of the per(fluoroalkylsulfonyl)imide family are particularly interesting for their use as electrolytes in lithium batteries. These ions have several geometric isomers and the presence of different ion conformers and their distribution affects the ILs (Ionic liquids) physical and chemical properties. In the present work, we report the temperature dependence of the infrared spectra of the N-butyl-N-methyl-pyrrolidinium(trifluoromethanesulfonyl) (nonafluorobutanesulfonyl)imide (PYR14-IM14) ionic liquid; DFT (Density Functional Theory) calculations performed with different models provides indications about the IM14 conformers and their vibrational spectra. Moreover the temperature dependence of the intensity of the lines identified as markers of different conformers provide indications about the conformers’ distribution and the difference of their enthalpy in the liquid phase

    An infrared spectroscopy study of the conformational evolution of the Bis(trifluoromethanesulfonyl)imide ion in the liquid and in the glass state

    Get PDF
    We measure the far-infrared spectrum of N,N-Dimethyl-N-ethyl-N-benzylammonium (DEBA) bis(trifluoromethanesulfonyl) imide (TFSI) ionic liquid (IL) in the temperature range between 160 and 307 K. Differential scanning calorimetry measurements indicate that such IL undergoes a glass transition around 210K. DFT calculations allow us to assign all the experimental absorptions to specific vibrations of the DEBA cation or of the two conformers of the TFSI anion. We find that the vibration frequencies calculated by means of the PBE0 functional are in better agreement with the experimental ones than those calculated at the B3LYP level, largely used for the attribution of vibration lines of ionic liquids. Experimentally we show that, in the liquid state, the relative concentrations of the two conformers of TFSI depend on temperature through the Boltzmann factor and the energy separation, ΔH, is found to be ≈2 kJ/mol, in agreement with previous calculations and literature. However, in the glassy state, the concentrations of the cis-TFSI and trans-TFSI remain fixed, witnessing the frozen state of this phase

    Dynamics in Quaternary Ionic Liquids with Non-Flexible Anions: Insights from Mechanical Spectroscopy

    Get PDF
    The present work investigates how mechanical properties and ion dynamics in ionic liquids (ILs) can be affected by ILs’ design while considering possible relationships between different mechanical and transport properties. Specifically, we study mechanical properties of quaternary ionic liquids with rigid anions by means of Dynamical Mechanical Analysis (DMA). We are able to relate the DMA results to the rheological and transport properties provided by viscosity, conductivity, and diffusion coefficient measurements. A good agreement is found in the temperature dependence of different variables described by the Vogel−Fulcher−Tammann model. In particular, the mechanical spectra of all the measured liquids showed the occurrence of a relaxation, for which the analysis suggested its attribution to a diffusive process, which becomes evident when the ion dynamics are not affected by the fast structural reorganization of flexible anions on a local level

    Hydrogen induced abrupt structural expansion at high temperatures of a Ni32Nb28Zr30Cu10 membrane for H2 purification

    Get PDF
    Ni-Nb-Zr amorphous membranes, prepared by melt-spinning, show great potential for replacing crystalline Pd-based materials in the field of hydrogen purification to an ultrapure grade (>99.999%). In this study, we investigate the temperature evolution of the structure of an amorphous ribbon with the composition Ni32Nb28Zr30Cu10 (expressed in atom %) by means of XRD and DTA measurements. An abrupt structural expansion is induced between 240 and 300 °C by hydrogenation. This structural modification deeply modifies the hydrogen sorption properties of the membrane, which indeed shows a strong reduction of the hydrogen capacity above 270 °C

    Hydrides as high capacity anodes in lithium cells: an Italian “Futuro in Ricerca di Base FIRB-2010” project

    Get PDF
    Automotive and stationary energy storage are among the most recently-proposed and still unfulfilled applications for lithium ion devices. Higher energy, power and superior safety standards, well beyond the present state of the art, are actually required to extend the Li-ion battery market to these challenging fields, but such a goal can only be achieved by the development of new materials with improved performances. Focusing on the negative electrode materials, alloying and conversion chemistries have been widely explored in the last decade to circumvent the main weakness of the intercalation processes: the limitation in capacity to one or at most two lithium atoms per host formula unit. Among all of the many proposed conversion chemistries, hydrides have been proposed and investigated since 2008. In lithium cells, these materials undergo a conversion reaction that gives metallic nanoparticles surrounded by an amorphous matrix of LiH. Among all of the reported conversion materials, hydrides have outstanding theoretical properties and have been only marginally explored, thus making this class of materials an interesting playground for both fundamental and applied research. In this review, we illustrate the most relevant results achieved in the frame of the Italian National Research Project FIRB 2010 Futuro in Ricerca “Hydrides as high capacity anodes in lithium cells” and possible future perspectives of research for this class of materials in electrochemical energy storage devices

    Relaxational Dynamics in the PYR14-IM14 Ionic Liquid by Mechanical Spectroscopy

    Get PDF
    The anelastic spectrum of the N-butyl-N-methyl-pyrrolidinium (trifluoromethanesulfonyl) (nonafluorobutanesulfonyl)imide (PYR14-IM14) is reported for the first time. On cooling, at 4 Kmin-1 the sample undergoes a glass transition around 190 K. In the liquid phase, a thermally activated relaxation process is measured and it is analyzed by means of a modified Debye model. The best fit results indicate that the peak is related to the ion hopping between non-equivalent configurations which are mainly defined by the anion conformer configuration

    Monoclinic and Orthorhombic NaMnO2 for Secondary Batteries: A Comparative Study

    Get PDF
    In this manuscript, we report a detailed physico-chemical comparison between the - and -polymorphs of the NaMnO2 compound, a promising material for application in positive electrodes for secondary aprotic sodium batteries. In particular, the structure and vibrational properties, as well as electrochemical performance in sodium batteries, are compared to highlight differences and similarities. We exploit both laboratory techniques (Raman spectroscopy, electrochemical methods) and synchrotron radiation experiments (Fast-Fourier Transform Infrared spectroscopy, and X-ray diffraction). Notably the vibrational spectra of these phases are here reported for the first time in the literature as well as the detailed structural analysis from diffraction data. DFT+U calculations predict both phases to have similar electronic features, with structural parameters consistent with the experimental counterparts. The experimental evidence of antisite defects in the beta-phase between sodium and manganese ions is noticeable. Both polymorphs have been also tested in aprotic batteries by comparing the impact of different liquid electrolytes on the ability to de-intercalated/intercalate sodium ions. Overall, the monoclinic -NaMnO2 shows larger reversible capacity exceeding 175 mAhg-1 at 10 mAg-1

    Solid–electrolyte interface formation on Si nanowires in Li-Ion batteries: the impact of electrolyte additives

    Get PDF
    The morphological changes of Si nanowires (Si NWs) cycled in 1:1 ethylene–carbonate (EC)/diethyl–carbonate (DEC) with or without different additives, fluoroethylene carbonate (FEC) or vinylene carbonate (VC), as well as the composition of the deposited solid–electrolyte interphase layer, are investigated by a combination of experimental microscopic and spectroscopic techniques. Scanning electron microscopy and optical spectroscopy highlight that the NW morphology is better preserved in samples cycled in the presence of FEC and VC additives compared to the additive-free electrolyte. However, only the use of FEC is capable of slightly mitigating the amorphization of silicon upon cycling. The solid electrolyte interphase (SEI) formed over the Si NWs cycled in the additive-free electrolyte is richer in organic and inorganic carbonates compared to the SEI grown in the presence of the VC and FEC additives. Furthermore, both additives are able to remarkably limit the degradation of the LiPF6 salt. Overall, the use of the FEC-additive in the carbonate-based electrolyte promotes both morphological and structural resilience of the Si NWs upon cycling thanks to the optimal composition of the SEI layer
    • 

    corecore